

INTRODUCTION

- Complies with IEC60384-14
- Single Layer AC Disc Safety Capacitor
- Coated with flame-retardant epoxy resin (conforming to UL94V-0)
- Lead with tin plated copper wire, inert metal copper or silver as a coating after the electrode, see diagram
- Halogen-free available

■ RECOGNITIONS: made for RFE by UL shop Welson

Approved	Country	Standards	Rated \	Voltage	Certification Number		
monogram	Country	Staridards	KL (X1Y2)	WD (X1Y1)	KL (X1Y2)	WD (X1Y1)	
c FLL us	USA	UL 60384-14	X1:400/440/500Vac	X1 : 400/760Vac	E404570		
C MANUS	Canada	OL 00364-14	Y2 : 250/300/500Vac	Y1 : 250/400/500Vac	E104572		
D ^V E	Germany	EN60384-14 (0565-1-1) : 2014-04 EN60384-14: 2013-08 IEC 60384-14 ed. 4	X1 : 440/400Vac Y2 : 300/250Vac	X1 : 660/400Vac Y1 : 500/250Vac	40016156	4016157	
	Korea	KC60384-14 / KC60384-1	250Vac		SZ03004-17002	SZ03004-17001	
Cec	China	GB/T 6346.14-2015	X1 : 400Vac Y2 : 250Vac	X1 : 400Vac Y1 : 250Vac	CQC03001008380	CQC03001008379	

■ ELECTRICAL CHARACTERISTICS

Characteristics	KL type (X1Y2)	WD type (X1Y1)					
Capacitance range	1pF to 0.015uF	1pF to 0.01uF					
Rated voltage	X1: 440/400Vac Y2: 300/250Vac	X1: 660/400Vac Y1: 500/250Vac					
Dielectric strength	2500Vac (50Hz-60Hz, 50mA max.) for 1 minute.	4000Vac (50Hz-60Hz, 50mA max.) for 1 minute.					
Capacitance	Within the specified tolerance. Y5P, Y5U, Y5V, X7R measured at 1KHz±20% C0G, SL measured at 1MHz±20% Both are 1Vrms, 25°C						
Dissipation Factor (tanδ) or Q Value	· ·	/5U, X7R: Y5V: nn δ: 0.025 max. tan δ: 0.050 max.					
Insulation resistance	10,000M Ω minimum at 500VDC for 1 minu	ute.					
Operating temperature	-55°C to 125°C						

■ CAPACITANCE CHART : preferred sized are shaded

Class			X1 Y2	(KL type)					X1 Y1	(WD ty	pe)		
Dielectric	COG (C)	SL (L)	Y5P (B)	X7R (X)	Y:	5U E)	Y5V (F)	COG (C)	SL (L)	Y5P (B)	X	7R X)	Y5U (E)	Y5V (F)
Capacitance 1.0 (pF) 1.5	G G	G G	G G					G G	G G	G G				
2.2 3.3 4.7	G G	G G	G G					G G J	G G J	G G				
5.1 6.8	G	G	G	G				J K	J K	i		1		
10 12	J	G G	1	G G				K	G G	J		J J		
15 18		G	1	G G G					G	J		J		
20 22 27		G G J	1	G					G G	J		J K		
30 33		j	i	G					G	J K		K		
36 39		J K	1	G G					G G	K		K K		
47 56		K	K	G					L	K		K		
68 82 100		K K	K K	G G					L	K K		K K	G	
120 150			G	G						K		K K	G	
180 220			G G	G G						K		K K	G	
270 330 390			G	G		E E				K		K K	G G	
470 560			J	i	- 1		E E			K K		K K	G	G G
680 820			J	i J	1		E E			K		Ì.	G	G G
860 1000			J L	J	(3	E G			L N		L N	!	G
1200 1500 1800			N N	M		3	G I I			O R		O R	K K	G I J
2000			0			j	i			R		R	L	J
2700 2800							i J						Ĺ L	K K
3000 3200 3300							J						M M M	L L
3600 3900					1	VI VI	K K	_+	D		T -		0	M M
4000 4700			7		- 1	N N	K L	_ (WI S		-		0 Q	M M
5000 5500			8			N N	L L	/	Y2 250 / 300V-				Q	N N
5600 6000 6800					(L M M		→	⊅d			Q S S	N N N
8000 8200					1	2 2	N N		F	-			S	Q
8600 9000						S	N O	,		+			S T	R R
10000 15000						S J	0 Q						U	R
Lead Spacing (F) (±1.0mm)			5.0 &	7.5 & 10.0						7.	5 & 10.0			
Thickness (T) max.	6.0mm 6.0mm													
Capacitance Tolerance	Below 10pF: ±0.25pF or ±0.50pF; 10pF~100pF: ±5% or ±10%; Over 100pF: ±10% or ±20%													
Coating	Epoxy resin (UL94V-0)													
Body Color	Blue													
Code	E	G	I	J	к	L	М	N	0	Q	R	S	Т	U
Diameter (D) max.	7mm	8mm	9mm	10mm	11mm	12mm	14mm	15mm	16mm	19mm	20mm	22mm	25mm	28mm

■ HOW TO ORDER

<u>5 - KL F 472 M AC2K5 10 Y 5</u>
(1) (2) (3) (4) (5) (6) (7) (8)

1. Type Code: KL class X1-Y2; WD class X1-Y1

2. Temperature Characteristic:

Code	Temp. Coefficient	Code	Temp. Coefficient	Code	Temp. Coefficient
С	COG	В	Y5P	E	Y5U
S	SL	Х	X7R	F	Y5V

3. Nominal capacitance:

Expressed by three-digit alphanumeric. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers. If there is a decimal point in between first two figures, it is expressed by the capital letter "R". See below examples:

Code	Capacitance	Code	Capacitance	Code	Capacitance	
5R1	5R1 5.1pF		10pF	472	4700pF	
8R0	8pF	101	100pF	103	0.01uF	

4. Capacitance Tolerance Code

Code	Tolerance	Tolerance Code Tolerance		Code	Tolerance	
С	± 0.25pF	J	± 5%	М	± 20%	
D	± 0.50pF	K	± 10%	Z	+80/-20%	

5. Minimum Test Voltage (AC): X1Y2 = AC2K5, X1Y1 = AC4KV

6. Lead Spacing (F)

Code	Lead spacing (F)	Code	Lead spacing (F)	
5	5 5.0±0.8mm		7.5±0.8mm	
6	6.35±0.8mm	10	10.0±0.8mm	

7. Lead style

	Code	S	Υ	X	W	Z
_	Lead Style	D T L	D I	D T	D T	D T

8. Lead length & package style:

Omitted for un-cut bulk pack 5 = 5+/-1mm, bulk pack, 6 = 6+/-1mm ... etc. TB = Ammo, TR = Reel

SPECIFICATION AND TEST METHOD

- 1. Please measure with the ambient temperature of 25±2°C, relative humidity of 45~85 percent.
- 2. Please measure in this order: Capacitance, DF, IR, Test voltage
- 3. Measurement of voltage of high-voltage capacitors should be based on 150V/µs rate, rise from 0V voltage. The test of time can be increased to test the voltage start time. Measuring the end of the capacitor should discharge.

No.	Ite	em	;	Specification		Те	sting Meth	od	
1		ance and nsions		fect on appearance form ns are within specified range.		acitor should be v			of defect.
2	Mar	king	To be easily le	egible		The capacito	r should be visua	ally inspected	
3	Capacita	nce (CR)	Within specifie	ed tolerance					
4		on Factor r Q Value	Char. C, S X, B, E F	Specification $Q \geq 400+20CR \ (CR < 30pF)$ $Q \geq 1000 \qquad (CR \geq 30pF)$ $\tan \delta : 0.050 \ max.$ $\tan \delta : 0.075 \ max.$	The capacitor and dissipation factor should be measured at 25±1°C with 1±0.2KHz (char. C & L: 1±0.2MHz) and AC5V(r.m.s.) max.				
5	Insulation Resistance (I.R.)		10,000MΩ mir	n.	within 60	lation resistance ±5 sec. of chargi citor through a re	ng. The voltage		
		Between Lead Wires	No failure		Table 1 a	acitor should not lare applied betwee Discharge currer Type Test Voltage	en the lead wire		
6	Dielectric Strength	Body Insulation	No failure		connected at right, a wrapped to the dis from each Then, the inserted metal ba Finally, A applied for the street of the street o	terminals of the degeneration that the body tance of about 3 h terminal. e capacitor should into a container fills of about 1 mm C voltage of Tabor 60 sec. between lead wires and r	, as shown in figd be closely of the capacitor to 4mm d be lilled with diameter. le 2 is en the	jure About	Metal foil
							< Table 2 >		
						Туре	KL	WD	
						Test Voltage	AC2500V	AC4000V	<u> </u>
			Char. B	Capacitance Change Within ± 10% Within ± 15%		acitance measur in Table 3.	ement should be	e made at eac	h step
			E	Within +20% / -55%		Step	Temperatu	re (°C)	
7	Tempe	erature	F	Within +30% / -80%		1 3tep	20 ± 2	, ,	
7	Charac	teristics	(Tem	p range: -25 to +85°C)		2	-25 ± 2		
			Char.	Temperature Coefficient		3	20 ± 2		
			C	0±30ppm/°C		4	85 ± 2		
			s	+350 to -1000ppm/°C		5	20 ± 2		
				p range: -25 to +85°C)			20 1 2		

continue ...

SPECIFICATION AND TEST METHOD (continue ...)

No.	Ite	m		Specification	Testing Method
8	Solderability		Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.		The lead wire of a capacitor should be dipped into molten solder for 2±0.5 sec. The depth of immersion is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder (Pb37/Sn63) 235±5°C
9	Soldering Effect (Non-Preheat)	Appearance Capacitance change	No marked C, S: ±5% α B: ±10% X, E, F: ±20 1,000MΩ m	or 1pF, whichever is larger	The lead wires should be immersed in solder of 350±10°C or 260±5°C up to 1.5mm to 2.0mm from the root of terminal for 3.5±0.5 sec. (10±1 sec for 260±5°C) Pre-treatment: Capacitor should be stored at 85±2°C for 1hr., and then placed
		Dielectric Strength	Per Item 6		at room condition for 24±2 hrs. before initial meaurements. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.
10	Soldering Effect	Appearance Capacitance change	No marked C, S: ±5% o B: ±10% X, E, F: ±20	or 1pF, whichever is larger	Capacitor should be stored at 120+0/-5°C for 60+0/-5 sec. The lead wires should be immersed in solder of 260±5°C up to 1.5mm to 2.0mm from the root of terminal for 7.5+0/-1 sec.
	(On-Preheat)	I.R. Dielectric Strength	1,000MΩ m	in	Pre-treatment and Post-treatment: see per Item 9
	Vibration Resistance	Appearance	No marked	defect	The capacitor should be firmly soldered to the supporting lead wire and vibrated at a frequency range of 10Hz to 55Hz,1.5mm
11		Capacitance tan δ or Q	Within the s	pecified tolerance	in total amplitude, with about a 1 minute rate of vibration change from 10Hz to 55 Hz and back to 10Hz. Apply for a total of 6 hrs., 2 hrs each in 3 mutually perpendicular directions.
		Appearance	No marked	defect	
		Capacitance change	C: Within ±2 S: Within ±5 X, B, E: Wit F: Within ±2	5% hin ±10%	
12	Humidity (Under Steady State)	tan δ or Q	Char. C, S X, B, E F	Specification $Q \geq 275+5/2C_R (C_R < 30pF)$ $Q \geq 350 \qquad (C_R \geq 30pF)$ $\tan \delta : 0.050 \text{ max.}$ $\tan \delta : 0.075 \text{ max.}$	Set the capacitor for 500±12 hrs., at 40±2°C in 90 to 95% relative humidity. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.
		I.R. Dielectric Strength	3,000MΩ m	in	
		Appearance	No marked	defect	
		Capacitance change	C: Within ±: S: Within ±: X, B, E: Wit F: Within±1	5% hin ±10%	
13	Humidity Loading	tan δ or Q	Char. C, S X, B, E F	$\begin{tabular}{lll} Specification & & & \\ Q \ge 275+5/2C_R \left(C_R < 30pF \right) \\ Q \ge 350 & & & & \\ (C_R \ge 30pF) \\ & & & \\ tan \ \delta : \ 0.050 \ max. \\ & & & \\ tan \ \delta : \ 0.075 \ max. \\ \end{tabular}$	Apply the rated voltage for 500±12 hrs. at 40±2°C in 90 to 95% relative humidity. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.
		I.R.	3,000MΩ m	in	
		Dielectric Strength	Per Item 6		continue

continue ...

SPECIFICATION AND TEST METHOD (continue ...)

No.	lte	em	Specification	Testing Method				
		Appearance Capacitance change	No marked defect C: Within ±2.5% S: Within ±5% X, B, E: Within ±10% F: Within±15% 3000MΩ min	Impulse Voltage: Each individual capacitor should be subjected to a 5kV (Type X1Y1: 8kV) impulses for three times. After the capacitors are applied to life test.				
14			Per Item 6	Apply a voltage of Table 4 for 1000 hrs. at 125+2/-0°C, and relative Humidity of 50% max. < Table 4 > Applied Voltage AC425V (r.m.s.), except that once each hour the Voltage is increased to AC1000V (r.m.s.) for 0.1 sec. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition				
15	Flame	e Test	The capacitor flame discontinues as follows. Cycle Time (sec.) 1 to 4 30 5 60	The capacitor should be subjected to applied flame for 15 sec. And then removed for 15 sec. until 5 cycles are completed. Capacitor Flame Gas Burner (in min)				
16	Robustness of Terminations	Tensile Bending	Fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N and keep it for 10±1 sec. Each lead wire should be subjected to 5N weight and then a 90° bend, at the point of egress, in one direction, return to original position, and then apply a 90° bend in the opposite direction at the rate of one bend in 2 to 3 sec.					
17	Active Flammability		The cheese-cloth should not be on fire	The capacitor should be individually wrapped in at least one but not more than two complete layers of cheese-cloth. The capacitor should not be subjected to 20 discharges. The interval between successive discharges should be 5 sec. The UAC should be maintained for 2 minutes after the last discharge. C1, 2: 1uF ± 10% C3: 0.33uF ± 5%, 10KV, Ct: 3uF ± 5%, 10KV, Cx: Capacitor under test F: Fuse, Rated 10A R: 100? ± 5% Ur: Rated Voltage Ut: Voltage applied to Ct. L1 to 4: 1.5mH ± 20%, 16A Rod core choke				
18	Passive FI	ammability	The burning time should not exceed 30 sec. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Each specimen should only be exposed once to the flame. Time of exposure to flame: 30 sec. Length of flame: 12 ± 1mm Gas burner: Length 35mm min Inside Dia. 0.5 ± 0.1mm Outside Dia 0.9mm max. Gas: Butane gas Purity 95% min				

SPECIFICATION AND TEST METHOD (continue ...)

No.	Ite	em	Specification			Testin	g Metho	od	
		Appearance	No marked defect	The capacitor should be subjected to 5 temperature cycles, then consecutively to 2 immersion cycles. Temperature Cycle >					
				Sto	tep	Temperatu	•	Time (min)	
		Capacitance change	C: Within ±2.5%	1	1	-25+0/-3		30	
			S: Within ±5% X, B, E: Within ±10%		2	Room temperature 125+3/-0		3	
			F: Within ±15%	3	3			30	
					4	Room temperature		3	
19	Temperature and Immersion	tan δ or Q	Per Item 4	Cycle time : 5 cycle < Immersion Cycle >					
	Cycle			Ste	ер	Temperature (°C)	Time (min)	Immersion Water	
				1	1	65+5/-0	0±3	Clean water	
		I.R.	3,000MΩ min	2	2	15	15	Salt water	
							C	Cycle time : 2 cycle	
		Dielectric Strength	Per Item 6	at room	itor s n cor itmen	hould be stored andition for 24±2 hr	rs. before ini	thr., and then placed tial meaurements.	

STORAGE ENVIRONMENT

Do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 degree centigrade and 20 to 70%.