

INTRODUCTION

- Complies with IEC60384-14
- Single Layer AC Disc Safety Capacitor
- Coated with flame-retardant epoxy resin (conforming to UL94V-0)
- Lead with tin plated copper wire, inert metal copper or silver as a coating after the electrode, see diagram
- Halogen-free available

■ RECOGNITIONS: made for RFE by UL/VDE/CQC shop Welson

Approved	Country	Standards	Rated \	Voltage	Certification Number		
monogram	Couring	Stariuarus	KL (X1Y2) WD (X1Y1)		KL (X1Y2)	WD (X1Y1)	
c 711 us	USA	- UL 60384-14	X1 : 500Vac	X1 : 760Vac	F10/	1570	
c 71. Us	Canada	UL 00304-14	Y2 : 500Vac	Y1 : 500Vac	E104572		
D ^V E	Germany	EN60384-14 (0565-1-1) : 2014-04 EN60384-14: 2013-08 IEC 60384-14 ed. 4	X1 : 440Vac Y2 : 300Vac	X1 : 660Vac Y1 : 500Vac	40016156	4016157	
	Korea	KC60384-14 / KC60384-1	250	250Vac		SZ03004-17001	
Cec	China	SB/T 6346.14-2015 X1 : 400Vac Y2 : 250Vac X1 : 400Vac Y1 : 250Vac			CQC03001008380	CQC03001008379	

ELECTRICAL CHARACTERISTICS

Characteristics	WD type (X1 Y1)	KL type (X1 Y2)				
Capacitance range	1pF to 0.01uF	1pF to 0.015uF				
Rated voltage	X1: 660/400Vac; Y1: 500/250Vac	X1: 440/400Vac; Y2: 300/250Vac				
Dielectric strength	4000Vac (50Hz-60Hz, 2500Vac (50Hz-60Hz, 50mA max.) for 1 minute. 50mA max.) for 1 minute.					
Capacitance (CR)	Within the specified tolerance. Y5P, Y5U, Y5V, X7R measured at 1I C0G, SL measured at 1MHz±20% Both are 1Vrms, 25	kHz±20%				
Dissipation Factor (tanδ) or Q Value	·	P, Y5U, X7R: Y5V: anδ: 0.025 max. tanδ: 0.050 max.				
Insulation resistance	10,000MΩ minimum at 500VDC for 1 minute.					
Operating temperature	-55°C to 125°C					

CAPACITANCE CHART

Class			X1 Y2	(KL type)					X1 Y	1 (WD ty	pe)		
Dielectric	C0G (C)	SL (L)	Y5P (B)	X7R (X)	Y	5U E)	Y5V (F)	COG (C)	SL (L)	Y5P (B)	X (7R X)	Y5U (E)	Y5V (F)
apacitance 1.0 pF) 1.5	G G	G G	G G					G G	G G	G G				
2.2 3.3	G G	G G	G G					G G	G G	G				
4.7	G	G	G					J	J	1		_		
5.1 6.8	G	G	G	G				J K	J K	J		1		
10 12	J	G G	- 1	G				К	G G	J		J		
15		G	I	G					G	J		J		
18 20 22		G G	 	G G					G G	J		J		
27 30		J	1	G G					G G	J		K K		
33 36		J	1	G					G G	K		K K		
39 47		J K	i	G					G L	K		K K		
56 68 82		K K	K K	G G					L	K K		K K		
100 120		K	G	G					-	K		K K	G G	
150 180			G G	G						K		K	G	
220 270			G	G G						K		K K	G	
330			G	G		E				К		К	G	
390 470			J	1		E E	E			K		K K	G G	G
560 680			J	1		E	E			K		K L	G G	G
820 860			J	J		E	E			L		L	1	G
1000 1200 1500			L L N	J M		G	G G			N N		N N		G
1800 1800 2000			N N O	M						R		O R R	K K L	J
2200 2700 2800			0			J L	l I J			R		R	L	J K
3000 3200							J						M M	L L
3300 3600						L N	ι Κ		D .	1	T -		M	L
3900 4000					1	N N	K K		_				0 0	M
4700						N	L	_ (KL103M WE @ AL @ WE X14007500V-				Q	М
5000 5500						N N	L L		V2.2501300V-				Q	N N
5600 6000						0	L M			Фф			Q S	N N
6800 8000				-		O R	M N	- 4		_			S	N Q
8200 8600						R	N N		F				S S	Q R
9000 10000 15000						S	0 0						T U	R R
Lead Spacing (F) (±1.0mm)		5.0 & 7.5 & 10.0 7.5 & 10.0												
Thickness (T)		6.0mm 6.0mm												
Capacitance Tolerance		Below 10pF: ±0.25pF or ±0.50pF; 10pF~100pF: ±5% or ±10%; Over 100pF: ±10% or ±20%												
Coating		Epoxy resin (UL94V-0)												
Body Color							ВІ	ue						
Code	E	G	1	J	к	L	М	N	0	Q	R	s	т	u
Diameter (D) max.	7mm	8mm	9mm	10mm	11mm	12mm	14mm	15mm	16mm	19mm	20mm	22mm	25mm	28n

HOW TO ORDER

<u>5 - KL F 472 M AC2K5 10 Y 5</u>
(1) (2) (3) (4) (5) (6) (7) (8)

1. Type Code: KL class X1-Y2; WD class X1-Y1

2. Temperature Characteristic:

Code	Temp. Coefficient	Code	Temp. Coefficient	Code	Temp. Coefficient
С	C0G	В	Y5P	Е	Y5U
S	SL	Χ	X7R	F	Y5V

3. Capacitance Code:

Expressed by three-digit alphanumeric. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers. If there is a decimal point in between first two figures, it is expressed by the capital letter "R". See below examples:

Code	Capacitance	Code	Capacitance	Code	Capacitance
5R1	5.1 pF	100	10 pF	472	4700 pF
8R0	8 pF	101	100 pF	103	0.1 uF

4. Capacitance Tolerance Code

Code	Tolerance	Code	Tolerance	Code	Tolerance
С	± 0.25pF	J	± 5%	М	± 20%
D	± 0.50pF	K	± 10%	Z	+80/-20%

5. Minimum Test Voltage (AC): X1Y2 = AC2K5, X1Y1 = AC4KV

6. Lead Spacing (F)

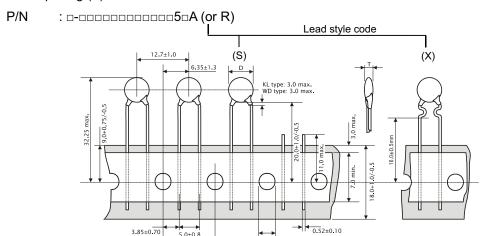
Code	Code Lead spacing (F)		Lead spacing (F)
5	5.0±0.8mm	7	7.5±0.8mm
6	6.35±0.8mm	10	10.0±0.8mm

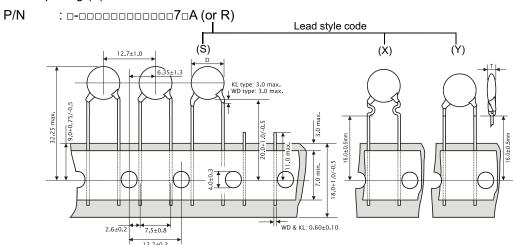
7. Lead style

8. Lead length & package style:

Omitted for un-cut bulk pack or Code L

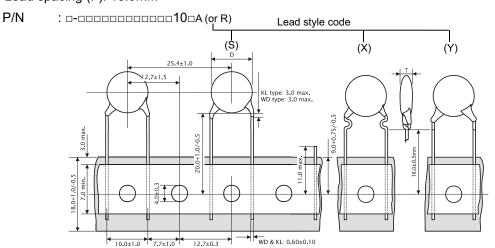
5 = 5+/-1mm, bulk pack, 6 = 6+/-1mm ... etc. (cut leads only available in bulk pack)


A = Taped & Ammo pack, R = Taped & on Reel



TAPING SPECIFICATION

Lead spacing (F): 5mm



Lead spacing (F): 7.5mm

4.0±0.3

Lead spacing (F): 10.0mm

Page 4 of 8

SPECIFICATION AND TEST METHOD

- 1. Please measure with the ambient temperature of 25±2°C, relative humidity of 45~85 percent.
- 2. Please measure in this order: Capacitance, DF, IR, Test voltage
- 3. Measurement of voltage of high-voltage capacitors should be based on 150V/µs rate, rise from 0V voltage. The test of time can be increased to test the voltage start time. Measuring the end of the capacitor should discharge.

lte	em	;	Specification		Те	sting Meth	od		
					The capacitor should be visually inspected for evidence of def Dimensions should be measured with slide calipers.				
Mar	king	To be easily le	egible	The capacitor should be visually inspected					
Capacita	nce (CR)	Within specifie	ed tolerance						
Dissipation Factor (tan δ) or Q Value		Char. C, S X, B, E F	Specification $Q \geq 400+20CR \ (CR < 30pF)$ $Q \geq 1000 (CR \geq 30pF)$ $tan \ \delta: \ 0.050 \ max.$ $tan \ \delta: \ 0.075 \ max.$	The capacitor and dissipation factor should be measured at 25±1°C with 1±0.2KHz (char. C & L: 1±0.2MHz) and AC5V(r.m.s.) max.					
		10,000MΩ mir	n.	within 60±5	sec. of chargi	ng. The voltage			
Between		No failure		First, the te connected at right, a n wrapped at to the dista from each to inserted int metal balls Finally, AC applied for capacitor le	Type Test Voltage erminals of the together. Therest loil should the body not of about 3 terminal. Eapacitor should on a container for about 1 mm voltage of Tabout 1 mm voltage of the ead wires and in Type	een the lead wire of t = 50mA) < Table 1 > KL AC2500V capacitor should a shown in fig do be closely of the capacitor to 4mm d be diameter. ole 2 is en the	WD AC4000	Metal foil	
Temperature Characteristics		Char. B X E F (Tem Char. C S	Capacitance Change Within ± 10% Within ± 15% Within +20% / -55% Within +30% / -80% Prange: -25 to +85°C) Temperature Coefficient 0±30ppm/°C +350 to -1000ppm/°C		Step 1 2 3 4	< Table 3 > Temperatur 20 ± 2 -25 ± 2 85 ± 2	re (°C) 2 2 2 2	och step	
	Appeara Dimer Mar Capacita Dissipatia (tan δ) or Insulation (I.I.) Dielectric Strength	Insulation Resistance (I.R.) Between Lead Wires Dielectric Strength Body Insulation	Appearance and Dimensions Marking Capacitance (CR) Dissipation Factor (tan δ) or Q Value Insulation Resistance (I.R.) Between Lead Wires Body Insulation Bright Properties No failure Char. C, S X, B, E F Insulation Resistance (I.R.) Char. Between Lead Wires No failure Char. B X E F Char. B X E F Char. C S Char. C S Char. C S Char. C S Char. C Temperature Characteristics	Appearance and Dimensions and dimensions are within specified range. Marking To be easily legible Capacitance (CR) Within specified tolerance Char. Specification	Appearance and Dimensions Appearance and Dimensions Marking To be easily legible Capacitance (CR) Within specified tolerance Char. Specification C, S Q≥400+20CR (CR < 30pF) Q≥1000 (CR ≥30pF) X, B, E tan δ: 0.075 max. Insulation Resistance (I.R.) Diselectric Strength Diselectric Strength No failure Char. Capacitance Change Between Lead Wires No failure Char. Capacitance (CR) Char. Specification C, S Q≥400+20CR (CR < 30pF) X, B, E tan δ: 0.075 max. The capacitance of t	Appearance and Dimensions Marking To be easily legible Capacitance (CR) Within specified tolerance Char. Specification C, S Q ≥ 400+20CR (CR < 30pF) X, B, E tan δ: 0.050 max. F tan δ: 0.075 max. Insulation Resistance (I.R.) Diselectric Strength Between Lead Wires No failure Diselectric Strength No failure Char. Capacitance Change B Within ± 15% E Within ± 15% E Within ± 15% E Within ± 15% E Within ± 20% / -55% F Within ± 30% (-300pm)°C Char. Temperature Coefficient C 0±30ppm/°C C 3	Appearance and Dimensions No marked defect on appearance form and dimensions are within specified range. Marking To be easily legible Capacitance (CR) Within specified tolerance Char. Specification Specification Char. Ch	Appearance and Dimensions No marked defect on appearance form and dimensions are within specified range. To be easily legible Capacitance (CR) Within specified tolerance Char. Specification C. S. Q ≥ 400+20CR (CR < 30pF) X, B, E I tan 6: 0.075 max. Insulation Resistance (LR.) Between Lead Wires No failure Charical Capacitance Change Between Characteristics Charical Capacitance Charac	

continue ...

SPECIFICATION AND TEST METHOD (continue ...)

No.	Ite	Item Specification		Testing Method			
8	Solderability of Leads		Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into molten solder for 2±0.5 sec. The depth of immersion is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder (Pb37/Sn63) 235±5°C			
9	Soldering Effect (Non-Preheat)	Appearance Capacitance change I.R. Dielectric Strength	No marked defect $ C, S: \pm 5\% \text{ or 1pF, whichever is larger} \\ B: \pm 10\% \\ X, E, F: \pm 20\% \\ \\ 1,000M\Omega \text{ min} $ Per Item 6	The lead wires should be immersed in solder of 350±10°C or 260±5°C up to 1.5mm to 2.0mm from the root of terminal for 3.5±0.5 sec. (10±1 sec for 260±5°C) Pre-treatment: Capacitor should be stored at 85±2°C for 1hr., and then placed at room condition for 24±2 hrs. before initial meaurements. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.			
10	Soldering Effect (On-Preheat)	Appearance Capacitance change I.R. Dielectric Strength	No marked defect C, S: $\pm 5\%$ or 1pF, whichever is larger B: $\pm 10\%$ X, E, F: $\pm 20\%$ 1,000M Ω min Per Item 6	Capacitor should be stored at 120+0/-5°C for 60+0/-5 sec. The lead wires should be immersed in solder of 260±5°C up to 1.5mm to 2.0mm from the root of terminal for 7.5+0/-1 sec. Pre-treatment and Post-treatment: see per Item 9			
11	Vibration Resistance	Appearance Capacitance tan δ or Q	No marked defect Within the specified tolerance Per Item 4	The capacitor should be firmly soldered to the supporting lead wire and vibrated at a frequency range of 10Hz to 55Hz,1.5mm in total amplitude, with about a 1 minute rate of vibration change from 10Hz to 55 Hz and back to 10Hz. Apply for a total of 6 hrs., 2 hrs each in 3 mutually perpendicular directions.			
		Appearance Capacitance change	No marked defect C: Within ±2.5% S: Within ±5% X, B, E: Within ±10% F: Within ±15%				
12	Humidity (Under Steady State)	tan δ or Q		Set the capacitor for 500±12 hrs., at 40±2°C in 90 to 95% relative humidity. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.			
		Dielectric Strength	Per Item 6				
		Appearance Capacitance change	No marked defect C: Within ±2.5% S: Within ±5% X, B, E: Within ±10% F: Within±15%				
13	Humidity Loading		C, S Q \geq 275+5/2CR (CR < 30pF) Q \geq 350 (CR \geq 30pF) X, B, E tan δ : 0.050 max.	Apply the rated voltage for 500±12 hrs. at 40±2°C in 90 to 95% relative humidity. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.			
		I.R. Dielectric Strength	3,000MΩ min Per Item 6				

continue ...

SPECIFICATION AND TEST METHOD (continue ...)

No.	Ite	em	Specification	Testing Method				
		Appearance Capacitance change	No marked defect C: Within ±2.5% S: Within ±5% X, B, E: Within ±10% F: Within±15%	Impulse Voltage: Each individual capacitor should be subjected to a 5kV (Type X1Y1: 8kV) impulses for three times. After the capacitors are applied to life test.				
14	Life Test	I.R. Dielectric Strength	3000MΩ min Per Item 6	Apply a voltage of Table 4 for 1000 hrs. at 125+2/-0°C, and relative Humidity of 50% max. < Table 4 > Applied Voltage AC425V (r.m.s.), except that once each hour the Voltage is increased to AC1000V (r.m.s.) for 0.1 sec. Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition				
15	Flame	e Test	The capacitor flame discontinues as follows Cycle Time (sec.) 1 to 4 30 5 60	The capacitor should be subjected to applied flame for 15 sec. And then removed for 15 sec. until 5 cycles are completed. Capacitor Flame Gas Burner (in mm)				
16	Terminations Bending 17 Active Flammability		Lead wire should not be cut off. Capacitor should not be broken.	Fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N and keep it for 10±1 sec. Each lead wire should be subjected to 5N weight and then a 90° bend, at the point of egress, in one direction, return to original				
17			The cheese-cloth should not be on fire	rate of one bend in 2 to 3 sec. The capacitor should be individually wrapped in at least one but not more than two complete layers of cheese-cloth. The capacitor should not be subjected to 20 discharges. The interval between successive discharges should be 5 sec. The UAC should be maintained for 2 minutes after the last discharge. C1, 2 : 1uF ± 10% C3 : 0.33uF ± 5%, 10KV, Ct : 3uF ± 5%, 10KV, Ct : 3uF ± 5%, 10KV Cx : Capacitor under test F : Fuse, Rated 10A R : 100? ± 5% Ur : Rated Voltage Ut : Voltage applied to Ct. L1 to 4 : 1.5mH ± 20%, 16A Rod core choke				
18			The burning time should not exceed 30 sec The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Each specimen should only be exposed once to the flame. Time of exposure to flame: 30 sec. Length of flame: 12 ± 1mm Gas burner: Length 35mm min Inside Dia. 0.5 ± 0.1mm Outside Dia 0.9mm max. Cas: Butane gas Purity 95% min				

continue ...

SPECIFICATION AND TEST METHOD (continue ...)

No.	Ite	em	Specification			Testin	g Metho	od
		Appearance	No marked defect	The capacitor should be subjected to 5 temperature cycles, then consecutively to 2 immersion cycles.				
				Ste	n	< rempe Temperatu	rature Cycle	Time (min)
			C: Within ±2.5%	1	h	-25+0/	,	30
		Capacitance change	S: Within ±5% X, B, E: Within ±10%	2		Room temp		3
		onange	F: Within ±15%	3		125+3/-0		30
				4		Room temperature		3
19	Temperature and Immersion Cycle	tan δ or Q	Per Item 4	Step	<u>, </u>	< Imm	ersion Cycle Time	cycle time : 5 cycle e > Immersion
						(°C)	(min)	Water
				1	4	65+5/-0	0±3	Clean water
		I.R.	3,000MΩ min	2		15	15	Salt water Cycle time : 2 cycle
		Dielectric Strength	Per Item 6	at room Post-treatn	or sh con	hould be stored a dition for 24±2 hr	at 85±2°C for s. before ini	r 1hr., and then placed tial meaurements.

STORAGE ENVIRONMENT

Do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 degree centigrade and 20 to 70%.