

- Complies with IEC60384-14
- Single Layer AC Disc Safety Capacitor
- Coated with flame-retardant epoxy resin (conforming to UL94V-0)
- Lead with tin plated copper wire, inert metal copper or silver as a coating after the electrode, see diagram
- Halogen-free available

RECOGNITIONS : made for RFE by UL/VDE/CQC shop Welson

Approved	Country	Standarda	Rated	/oltage	Certification Number		
monogram	Country	Standards	KL (X1Y2) WD (X1Y1)		KL (X1Y2)	WD (X1Y1)	
	USA	111 60394 14	X1 : 500Vac	X1 : 760Vac	5404570		
	Canada	OL 60384-14	Y2 : 500Vac	Y1 : 500Vac	E104572		
	Germany	EN60384-14 (0565-1-1) : 2014-04 EN60384-14: 2013-08 IEC 60384-14 ed. 4	X1 : 440Vac Y2 : 300Vac	X1 : 440Vac X1 : 660Vac Y2 : 300Vac Y1 : 500Vac		4016157	
<u>লি</u>	Korea	KC60384-14 / KC60384-1	250	Vac	SZ03004-17002	SZ03004-17001	
Ce	China	GB/T 6346.14-2015	X1 : 400Vac Y2 : 250Vac	X1 : 400Vac Y1 : 250Vac	CQC03001008380	CQC03001008379	

ELECTRICAL CHARACTERISTICS

Characteristics	WD type (X1 Y1)	KL type (X1 Y2)		
Capacitance range	1pF to 0.01uF	1pF to 0.015uF		
Rated voltage	X1: 660/400Vac; Y1: 500/250Vac	X1: 440/400Vac; Y2: 300/250Vac		
Dielectric strength	4000Vac (50Hz-60Hz, 50mA max.) for 1 minute.	2500Vac (50Hz-60Hz, 50mA max.) for 1 minute.		
Capacitance (CR)	Within the specified tolerance. Y5P, Y5U, Y5V, X7R measured at 1k C0G, SL measured at 1MHz±20% Both are 1Vrms, 25	Hz±20%		
Dissipation Factor (tanδ) or Q Value	SL and COG:Y5P $Q \ge 400+20C_R (C_R < 30pF)$ tar $Q \ge 1000 (C_R \ge 30pF)$ Measured condition see "Capacitance"	', Y5U, X7R: Y5V: nδ: 0.025 max. tanδ: 0.050 max.		
Insulation resistance	10,000M Ω minimum at 500VDC for 1 minu	ute.		
Operating temperature	-55°C to 125°C			

CAPACITANCE CHART

Class	X1 Y2 (KL type)						X1 Y1 (WD type)							
Dielectric	COG (C)	SL (L)	Y5P (B)	X7R (X)	Y!	5U E)	Y5V (F)	C0G (C)	SL (L)	Y5P (B))	(7R X)	Y5U (E)	Y5V (F)
Capacitance 1.0 (pF) 1.5	G G	G G	G G					G G	G G	G				
2.2 3.3	G	G	G					G	G	G				
4.7 5.1 6.8	GJ	GJ	G	G				L J J	JK			1		
10 12	J	G G	I I	G				К	G G	J		J		
15		G		G					G	J		J		
20 22 27		G		G					G	J		R J J		
30 33		J	i	G					G	J K		к к		
36 39 47		R J J		GG					G	K		K K		
56 68		ĸ	ĸĸ	GG					L	ĸĸ		K K		
82 100		К	G	G					L	K		K K	G	
120 150			G	G						K		ĸ	G	
220 270			G	G						ĸĸ		K K	G	
330 390 470			GJ	G	E		F			K		K K	GGG	G
560 680			J	1	E		E			ĸĸ		K	G	G
820 860			J	J	E	E	E			L		L	1	G
1000 1200			L	J M		3	G			NN		N N		G
1800 2000			N O	M						R		R R	KL	J J
2200 2700 2800			0			J				R		R		JKK
3000 3200			0				J						M	L
3600 3900					1	ч И И	K K		D				0	M
4000 4700					P	N N	K L	- (KL 103M WI: 00 AL		-		Q	M
5000 5500						N	L	_	Y2 250/ 300V-	• 1	-		Q	N N
6000 6800							M		→ 	Ψ			s s	N N N
8000 8200					F	2	N N	-	F I	-	1		S S	aai
9000				_		S S	N 0 0						T U	R
15000 Lead Spacing (F)			5.0 &	7.5 & 10.0		Ŭ	Q			1	.5 & 10.0			
(±1.0mm) Thickness (T)			6	.0mm							6.0mm			
max. Capacitance Tolerance			Below 10	pF: ±0.25p	F or ±0.50)pF; 10	0pF~100	oF: ±5% or :	±10%;	Over 100p	F: ±10%	or ±20%		
Coating						Ep	ooxy resi	n (UL94V-0						
Body Color							BI	ue						
Code	E	G	1	J	к	L	М	N	0	Q	R	S	т	U
Diameter (D) max. 7mm 8mm 9mm 10mm 11mm 12mm 14mm 15mm 16mm 19mm 20mm 22mm					25mm	28mm								

Page	2	of	8
------	---	----	---

$\underline{5} - \underbrace{\text{KL}}_{(1)} \underbrace{\text{F}}_{(2)} \underbrace{472}_{(3)} \underbrace{\text{M}}_{(4)} \underbrace{\text{AC2K5}}_{(5)} \underbrace{10}_{(6)} \underbrace{\text{Y}}_{(7)} \underbrace{5}_{(8)}$

1. Type Code: KL class X1-Y2 ; WD class X1-Y1

2. Temperature Characteristic:

Code	ode Temp. Coefficient Code		Temp. Coefficient	Code	Temp. Coefficient
С	COG	В	Y5P	E	Y5U
S	SL	Х	X7R	F	Y5V

3. Capacitance Code:

HOW TO ORDER

Expressed by three-digit alphanumeric. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers. If there is a decimal point in between first two figures, it is expressed by the capital letter "R". See below examples:

Code	Capacitance	Code	Capacitance	Code	Capacitance
5R1	5.1 pF	100	10 pF	472	4700 pF
8R0	8 pF	101	100 pF	103	0.1 uF

4. Capacitance Tolerance Code

Code	Tolerance	Code	Tolerance	Code	Tolerance
С	± 0.25pF	J	± 5%	М	± 20%
D	± 0.50pF	K	± 10%	Z	+80/-20%

5. Minimum Test Voltage (AC): X1Y2 = AC2K5, X1Y1 = AC4KV

6. Lead Spacing (F)

Code	Lead spacing (F)	Code	Lead spacing (F)
5	5.0±0.8mm	7	7.5±0.8mm
6	6.35±0.8mm	10	10.0±0.8mm

7. Lead style

8. Lead length & package style:

Omitted for un-cut bulk pack or Code L

5 = 5 + -1mm, bulk pack, 6 = 6 + -1mm ... etc. (cut leads only available in bulk pack)

A = Taped & Ammo pack, R = Taped & on Reel

Page 3 of 8

TAPING SPECIFICATION

P/N

Lead spacing (F): 5mm

Lead spacing (F): 7.5mm

Lead spacing (F): 10.0mm

P/N

Page 4 of 8

SPECIFICATION AND TEST METHOD

- 1. Please measure with the ambient temperature of 25±2°C, relative humidity of 45~85 percent.
- 2. Please measure in this order: Capacitance, DF, IR, Test voltage
- 3. Measurement of voltage of high-voltage capacitors should be based on 150V/µs rate, rise from 0V voltage . The test of time can be increased to test the voltage start time.

Measuring the end of the capacitor should discharge.

No.	lte	em	:	Specification		Те	sting Method			
1	Appeara Dime	ance and nsions	No marked de and dimensior	fect on appearance form ns are within specified range.	The capa Dimensio	icitor should be v	isually inspected asured with slide	l for evidence e calipers.	e of defect.	
2	Mar	king	To be easily le	egible		The capacito	r should be visua	ally inspected		
3	Capacita	ince (CR)	Within specifie	ed tolerance						
4	4 Dissipation Factor (tan δ) or Q Value		Char. C, S X, B, E F	Specification Q ≥ 400+20CR (CR < 30pF)	The capacitor and dissipation factor should be measured at 25±1°C with 1±0.2KHz (char. C & L: 1±0.2MHz) and AC5V(r.m.s.) max.					
5	Insulation Resistance (I.R.)		10,000MΩ mir	٦.	The insul within 60 the capae	ation resistance ±5 sec. of chargi citor through a re	should be measing. The voltage sistor of 1MΩ.	ure with DC5 should be ap	00±50V plied to	
		Between Lead Wires	No failure		The capa Table 1 a (Charge/	citor should not l re applied betwe Discharge curren Type Test Voltage	ee damaged who en the lead wires t =50mA) < Table 1 > KL AC2500V	en test voltag s for 60 sec. WD AC4000V	es of	
6	6 Dielectric Strength Body Insulation		Body Insulation Body Insulation Body Body Insulation Insulation Body Insulation Insul		First, the terminals of the capacitor should be connected together. Then, as shown in figure at right, a metal foil should be closely wrapped around the body of the capacitor o the distance of about 3 to 4mm rom each terminal. Then, the capacitor should be nserted into a container filled with netal balls of about 1mm diameter. Finally, AC voltage of Table 2 is applied for 60 sec. between the capacitor lead wires and metal balls.					
							< Table 2 >		_	
						Туре	KL	WD		
					· -	Test Voltage	AC2500V	AC4000V	·	
			Char.	Capacitance Change	The capa	citance measure	ement should be	made at eac	h sten	
			В	Within ± 10%	specified	in Table 3.			F	
			x	Within ± 15%			< Table 3 >			
			E	Within +20% / -55%		Sten	Temperatu	re (°C)		
7	Temp	erature	F	Within +30% / -80%		1	20 + 2	e (0)		
1	Charac	teristics	(Temp range: -25 to +85°C)		2 -25 + 2			2		
			Char.	Temperature Coefficient		3	20 ± 2	2		
			C	0±30ppm/°C	4 85 ± 2			2		
			S	+350 to -1000ppm/ºC		5	20 ± 2	2		
			(Tem	p range: -25 to +85°C)						

Page 5 of 8

continue ...

No.	lte	m		Specification	Testing Method			
8	Solder of Le	ability eads	Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.		The lead wire of a capacitor should be dipped into molten solder for 2±0.5 sec. The depth of immersion is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder (Pb37/Sn63) 235±5°C			
		Appearance	No marked	defect	The lead wires should be immersed in			
q	Soldering	Capacitance change	C, S: ±5% c B: ±10% X, E, F: ±20	or 1pF, whichever is larger %	1.5mm to 2.0mm from the root of terminal for 3.5±0.5 sec. (10±1 sec for 260±5°C)			
5	(Non-Preheat)	I.R.	1,000MΩ m	in	Pre-treatment: Capacitor should be stored at 85±2°C for 1hr., and then placed at room condition for 24±2 hrs. before initial meaurements.			
		Dielectric Strength	Per Item 6		Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.			
		Appearance	No marked	defect				
10	10 Soldering 10 Effect (On-Preheat)	Capacitance change	C, S: ±5% c B: ±10% X, E, F: ±20	or 1pF, whichever is larger %	Capacitor should be stored at $120+0/-5^{\circ}$ C for $60+0/-5$ sec. The lead wires should be immersed in solder of $260\pm5^{\circ}$ C up to 1.5mm to 2.0mm from the root of terminal for 7.5+0/-1 sec.			
		I.R.	1,000MΩ m	in	Pre-treatment and Post-treatment: see per Item 9			
		Dielectric Strength	Per Item 6					
		Appearance	No marked	defect	The capacitor should be firmly soldered to the supporting lead			
11	Vibration Resistance	Capacitance	Within the s	pecified tolerance	in total amplitude, with about a 1 minute rate of vibration change from 10Hz to 55 Hz and back to 10Hz. Apply for a total of 6 hrs.,			
		tan δ or Q	Per Item 4		2 hrs each in 3 mutually perpendicular directions.			
		Appearance	No marked defect					
		Capacitance change	C: Within ±2 S: Within ±5 X, B, E: Wit F: Within ±1	2.5% 5% hin ±10% 5%				
12	Humidity (Under Steady State)	tan δ or Q	Char. C, S	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Set the capacitor for 500±12 hrs., at 40±2°C in 90 to 95% relative humidity. Post-treatment:			
			X, B, E	tan δ: 0.050 max.	Capacitor should be stored for 1 to 2 hrs. at room condition.			
			F	tan ò: 0.075 max.	-			
		I.R. Dielectric	3,000MΩ m Per Item 6	in				
		Appearance	No marked	defect				
		Capacitance change	C: Within ±2 S: Within ±5 X, B, E: Wit F: Within±1	2.5% 5% hin ±10% 5%				
	L la une l'allée a		Char.	Specification	Apply the rated voltage for 500±12 hrs. at 40±2°C in 90 to 95% relative humidity.			
13	Loading	tan δ or O	C, S	$Q \ge 275+5/2C_R (C_R < 30pF)$ $Q \ge 350 (C_R \ge 30pF)$	Post-treatment:			
			X, B, E	tan δ: 0.050 max.	Capacitor should be stored for 1 to 2 hrs. at room condition.			
			F	tan δ: 0.075 max.	_			
		I.R.	3,000MΩ m	in	4			
		Dielectric Strength	Per Item 6					

continue ...

SPECIFICATION AND TEST METHOD (continue ...)

INTERNATIONAL

No.	lte	em	Specification	Testing Method				
		Appearance Capacitance change	No marked defect C: Within ±2.5% S: Within ±5% X, B, E: Within ±10% F: Within±15%	Impulse Voltage: Each individual capacitor should be subjected to a 5kV (Type X1Y1: 8kV) impulses for three times. After the capacitors are applied to life test.				
14	Life Test	I.R. 3000MΩ min ife Test Dielectric Strength Per Item 6		Apply a voltage of Table 4 for 1000 hrs. at 125+2/-0°C, and relative Humidity of 50% max. < Table 4 > <u>Applied Voltage</u> AC425V (r.m.s.), except that once each hour the <u>Voltage is increased to AC1000V (r.m.s.) for 0.1 sec.</u> Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition				
15	15 Flame Test		The capacitor flame discontinues as follows.CycleTime (sec.)1 to 430560	The capacitor should be subjected to applied flame for 15 sec. And then removed for 15 sec. until 5 cycles are completed.				
16	Robustness of Terminations		Lead wire should not be cut off. Capacitor should not be broken.	Fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N and keep it for 10±1 sec. Each lead wire should be subjected to 5N weight and then a 90°				
		Bending		bend, at the point of egress, in one direction, return to original position, and then apply a 90° bend in the opposite direction at the rate of one bend in 2 to 3 sec.				
17	17 Active Flammability		The cheese-cloth should not be on fire	The capacitor should be individually wrapped in at least one but not more than two complete layers of cheese-cloth. The capacitor should not be subjected to 20 discharges. The interval between successive discharges should be 5 sec. The UAC should be maintained for 2 minutes after the last discharge. $ \underbrace{I_{1} = \underbrace{I_{2} = I$				
18	18 Passive Flammability		The burning time should not exceed 30 sec. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Each specimen should only be exposed once to the flame. Time of exposure to flame : 30 sec.				

Page 7 of 8

continue ...

SPECIFICATION AND TEST METHOD (continue ...)

No.	lte	m	Specification			Testin	ig Metho	d		
		Appearance	No marked defect	The o	capacitor ecutively	should be subject to 2 immersion c	ted to 5 tem ycles.	perature cycles, then		
						< Tempe	rature Cycle	>		
					Step	Temperature (°C)		perature cycles, then Time (min) 30 30 30 30 30 2ycle time : 5 cycle a> Immersion Water Clean water Clean water Clean water Cycle time : 2 cycle r 1hr., and then placed tial meaurements. at room condition.		
			C: Within ±2.5%		1	-25+0/	-3	30 30 30 30 30 30 3		
		Capacitance change	S: Within ±5% X, B, E: Within ±10%		2	Room temperature 125+3/-0		3		
		Ū.	F: Within ±15%		3			30		
					4	Room temp	erature	3		
	Temperature and Immersion	tan δ or Q				r	C	ycle time : 5 cycle		
19			Per Item 4	< Immersion Cycle >						
	Cycle				Step	Temperature (°C)	Time (min)	30 3 Cycle time : 5 cycle ycle > Immersion Water Clean water		
					1	65+5/-0	0±3	Clean water		
		I.R.	3.000MΩ min		2	15	15	Salt water		
							С	ycle time : 2 cycle		
		Dielectric Strength	Per Item 6	Pre-treatm Capacit at room Post-treatr Capacit		t: should be stored a ndition for 24±2 h nt: should be stored f	at 85±2°C for rs. before init or 24±2 hrs.	1hr., and then placed ial meaurements. at room condition.		

STORAGE ENVIRONMENT

Do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 degree centigrade and 20 to 70%.